Click on a metric name to sort that metric. Models evaluated as probabilistic models are shown with green background. The performance under the metric which a model has been trained on is shown in italic. The code for evaluation models can be found here.
Name | Published | Code | IG | AUC | sAUC | NSS | CC | KLDiv | SIM | Date tested |
Itti, L., Koch, C., & Niebur, E. (1998). A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(11), 1254–1259 |
0.5434 | 0.5357 | 0.4081 | 0.1307 | 1.4964 | 0.3378 |
First tested 2019-09-14 Last tested 2019-09-14 maps from SaliencyToolBox via pysaliency |
|||
Lingyun Zhang, Matthew H. Tong, Tim K. Marks, Honghao Shan, Garrison W. Cottrell. SUN: A Bayesian framework for saliency using natural statistics [JoV 2008] |
0.6939 | 0.6260 | 0.7620 | 0.2770 | 1.2815 | 0.3931 |
First tested 2019-10-23 Last tested 2019-10-23 maps from code via SMILER. Params: rescale=0.5 |
|||
Saliency Detection by Self-Resemblance (SSR) |
Hae Jong Seo, Peyman Milanfar Nonparametric Bottom-Up Saliency Detection by Self-Resemblance [CVPR 2009]. |
0.7064 | 0.6482 | 0.8110 | 0.2999 | 1.5255 | 0.4124 |
First tested 2019-09-05 Last tested 2019-09-05 maps from SMILER |
||
Quaternion-Based Spectral Saliency (QSS) |
B. Schauerte, R. Stiefelhagen. Quaternion-based Spectral Saliency Detection for Eye Fixation Prediction [ECCV 2012] |
0.7233 | 0.6679 | 0.9116 | 0.3300 | 1.1431 | 0.4208 |
First tested 2019-09-05 Last tested 2019-09-05 maps from SMILER |
||
Image Signature |
Xiaodi Hou, Jonathan Harel, Christof Koch. Image Signature: Highlighting Sparse Salient Regions [PAMI 2011] |
0.7461 | 0.6610 | 0.9907 | 0.3709 | 1.0897 | 0.4278 |
First tested 2019-09-05 Last tested 2019-09-05 maps from SMILER |
||
Dynamic Visual Attention (DVA) |
Hou, Xiaodi, and Liqing Zhang. Dynamic visual attention: Searching for coding length increments NIPS 2008 |
0.7548 | 0.6584 | 1.0142 | 0.3762 | 1.1136 | 0.4518 |
First tested 2019-09-04 Last tested 2019-09-04 maps from SMILER |
||
Stas Goferman, Lihi Zelnik-Manor, Ayellet Tal. Context-Aware Saliency Detection [CVPR 2010] [PAMI 2012] |
0.7581 | 0.6402 | 1.0186 | 0.3848 | 1.0723 | 0.4319 |
First tested 2019-09-04 Last tested 2019-09-04 maps from SMILER |
|||
Anton Garcia-Diaz, Victor Leboran, Xose R. Fdez-Vidal, Xose M. Pardo. On the relationship between optical variability, visual saliency, and eye fixations: A computational approach [JoV 2012] |
0.7613 | 0.6761 | 1.0860 | 0.4009 | 1.0435 | 0.4397 |
First tested 2022-10-25 Last tested 2022-10-25 maps from code via SMILER. Params: resize=0.5 |
|||
AIM |
Neil Bruce, John Tsotsos. Attention based on information maximization [JoV 2007] |
0.7619 | 0.6647 | 0.8824 | 0.3419 | 1.2476 | 0.4096 |
First tested 2019-09-10 Last tested 2019-09-10 maps from code via SMILER. Params: resize=0.5, thebasis='31infomax975' |
||
Nicolas Riche, Matei Mancas, Matthieu Duvinage, Makiese Mibulumukini, Bernard Gosselin, Thierry Dutoit. RARE2012: A multi-scale rarity-based saliency detection with its comparative statistical analysis [Signal Processing: Image Communication, 2013] |
0.7700 | 0.6729 | 1.1513 | 0.4220 | 1.0090 | 0.4572 |
First tested 2019-09-05 Last tested 2019-09-05 maps from SMILER |
|||
Jianming Zhang, Stan Sclaroff. Saliency detection: a boolean map approach [ICCV 2013] |
0.7718 | 0.6918 | 1.1512 | 0.4130 | 1.0235 | 0.4456 |
First tested 2019-09-04 Last tested 2019-09-04 maps from SMILER |
|||
IttiKoch2 |
Implementation by Jonathan Harel (part of GBVS toolbox) |
0.7811 | 0.6323 | 1.1130 | 0.4299 | 0.9605 | 0.4648 |
First tested 2019-09-05 Last tested 2019-09-05 maps from SMILER |
||
Centerbias |
leave-one-image out kernel density estimate with uniform mixture component |
0.0000 | 0.7830 | 0.1303 | 1.0960 | 0.4455 | 0.9506 | 0.4815 |
First tested 2019-09-10 Last tested 2021-11-24 |
|
CASPER V1 Salience |
Rachel Heaton, Simona Buetti, Alejandro Lleras, and John Hummel |
0.7941 | 0.6014 | 1.2093 | 0.4676 | 1.0295 | 0.4946 |
First tested 2021-09-07 Last tested 2021-09-07 maps from authors |
||
Hamed Rezazadegan Tavakoli, Esa Rahtu, Janne Heikkila. Fast and efficient saliency detection using sparse sampling and kernel density estimation [SCIA 2011] |
0.8018 | 0.5941 | 1.2763 | 0.4827 | 2.3018 | 0.4919 |
First tested 2019-09-04 Last tested 2019-09-04 maps from SMILER |
|||
Jonathan Harel, Christof Koch, Pietro Perona. Graph-Based Visual Saliency [NIPS 2006] |
0.8062 | 0.6299 | 1.2457 | 0.4791 | 0.8878 | 0.4835 |
First tested 2019-09-05 Last tested 2019-09-05 maps from SMILER |
|||
Tilke Judd, Krista Ehinger, Fredo Durand, Antonio Torralba. Learning to predict where humans look [ICCV 2009] |
0.8095 | 0.6003 | 1.1882 | 0.4664 | 1.1084 | 0.4182 |
First tested 2019-09-12 Last tested 2019-09-12 maps from SaliencyToolBox via pysaliency |
|||
LDS |
Shu Fang, Jia Li, Yonghong Tian, Tiejun Huang, Xiaowu Chen. Learning Discriminative Subspaces on Random Contrasts for Image Saliency Analysis [TNNLS 2016] |
0.8108 | 0.6020 | 1.3649 | 0.5177 | 1.0631 | 0.5222 |
First tested 2019-09-05 Last tested 2019-09-05 maps from SMILER |
||
Erkut Erdem, Aykut Erdem. Visual saliency estimation by nonlinearly integrating features using region covariances [JoV 2013] |
0.8116 | 0.5894 | 1.3362 | 0.5000 | 1.7220 | 0.5058 |
First tested 2019-09-04 Last tested 2019-09-04 maps from SMILER |
|||
OpenSALICON |
Christopher Lee Thomas. OpenSalicon: An Open Source Implementation of the Salicon Saliency Model [arXiv 2016] |
0.8140 | 0.7395 | 1.7029 | 0.5620 | 0.7829 | 0.5166 |
First tested 2019-09-06 Last tested 2019-09-06 maps from SMILER |
||
Eleonora Vig, Michael Dorr, David Cox. Large-Scale Optimization of Hierarchical Features for Saliency Prediction in Natural Images [CVPR 2014] |
0.8171 | 0.6180 | 1.1399 | 0.4518 | 1.1369 | 0.4112 |
First tested 2019-09-06 Last tested 2019-09-06 maps from SMILER |
|||
Matthias Kümmerer, Thomas S. A. Wallis, Leon A. Gatys, Matthias Bethge. Understanding Low- and High-Level Contributions to Fixation Prediction [ICCV 2017] |
0.4140 | 0.8330 | 0.6957 | 1.6134 | 0.5876 | 0.7084 | 0.5576 |
First tested 2019-03-26 Last tested 2021-11-25 |
||
ML-Net |
Marcella Cornia, Lorenzo Baraldi, Giuseppe Serra, Rita Cucchiara. A Deep Multi-Level Network for Saliency Prediction [ICPR 2016] |
0.8386 | 0.7399 | 1.9748 | 0.6633 | 0.8006 | 0.5819 |
First tested 2019-09-05 Last tested 2019-09-05 maps from SMILER |
||
DeepGaze I |
Matthias Kümmerer, Lucas Theis, Matthias Bethge. Deep Gaze I: Boosting Saliency Prediction with Feature Maps Trained on ImageNet [arxiv 2014, ICLR 2015 workshop] |
0.4836 | 0.8427 | 0.7232 | 1.7234 | 0.6144 | 0.6678 | 0.5717 |
First tested 2019-09-05 Last tested 2021-11-19 predictions from authors |
|
Deep Visual Attention (DVA) |
W. Wang, and J. Shen. Deep Visual Attention Prediction [IEEE TIP 2018] |
0.8430 | 0.7257 | 1.9305 | 0.6631 | 0.6293 | 0.5848 |
First tested 2019-09-04 Last tested 2019-09-04 maps from SMILER |
||
Saliency Attentive Model (SAM-VGG) |
Marcella Cornia, Lorenzo Baraldi, Giuseppe Serra, Rita Cucchiara. Predicting Human Eye Fixations via an LSTM-based Saliency Attentive Model [IEEE TIP 2018] |
0.8473 | 0.7305 | 1.9552 | 0.6630 | 1.2746 | 0.5986 |
First tested 2019-09-09 Last tested 2019-09-09 maps from SMILER |
||
Junting Pan, Cristian Canton, Kevin McGuinness, Noel E. O'Connor, Jordi Torres, Elisa Sayrol and Xavier Giro-i-Nieto. SalGAN: Visual Saliency Prediction with Generative Adversarial Networks [arXiv 2017] |
0.8498 | 0.7354 | 1.8620 | 0.6740 | 0.7574 | 0.5932 |
First tested 2019-09-06 Last tested 2019-09-06 maps from SMILER |
|||
Saliency Attentive Model (SAM-ResNet) |
Marcella Cornia, Lorenzo Baraldi, Giuseppe Serra, Rita Cucchiara. Predicting Human Eye Fixations via an LSTM-based Saliency Attentive Model [IEEE TIP 2018] |
0.8526 | 0.7396 | 2.0628 | 0.6897 | 1.1710 | 0.6122 |
First tested 2019-09-09 Last tested 2019-09-09 maps from SMILER |
||
S. Fan, Z. Shen, M. Jiang, B. Koenig, J. Xu, M. Kankanhali, Q. Zhao. Emotional Attention: A Study of Image Sentiment and Visual Attention [CVPR 2018] |
0.8552 | 0.7398 | 1.9859 | 0.7054 | 0.5857 | 0.5806 |
First tested 2019-11-11 Last tested 2019-11-11 maps from authors |
|||
GazeGAN |
0.8607 | 0.7316 | 2.2118 | 0.7579 | 1.3390 | 0.6491 |
First tested 2020-04-21 Last tested 2020-04-21 maps from authors |
|||
0.8640 | 0.7446 | 2.1825 | 0.7578 | 0.8873 | 0.6551 |
First tested 2019-06-29 Last tested 2021-11-22 maps from authors |
||||
TranSalNet |
Jianxun Lou, Hanhe Lin, David Marshall, Dietmar Saupe and Hantao Liu: TranSalNet: Towards perceptually relevant visual saliency prediction. Neurocomputing 2022 |
0.8730 | 0.7471 | 2.3758 | 0.7991 | 0.9019 | 0.6852 |
First tested 2021-05-04 Last tested 2021-05-04 maps from authors |
||
Matthias Kümmerer, Thomas S. A. Wallis, Leon A. Gatys, Matthias Bethge. Understanding Low- and High-Level Contributions to Fixation Prediction [ICCV 2017] |
0.9247 | 0.8733 | 0.7759 | 2.3371 | 0.7703 | 0.4239 | 0.6636 |
First tested 2019-09-11 Last tested 2021-11-16 |
||
TranSalNet_Dense |
Jianxun Lou, Hanhe Lin, David Marshall, Dietmar Saupe and Hantao Liu: TranSalNet: Towards perceptually relevant visual saliency prediction. Neurocomputing 2022 |
0.8734 | 0.7467 | 2.4134 | 0.8070 | 1.0141 | 0.6895 |
First tested 2021-12-08 Last tested 2021-12-08 maps from authors |
||
MSI-Net |
A. Kroner, M. Senden, K. Driessens, R. Goebel: Contextual encoder–decoder network for visual saliency prediction. Neural Networks 2020 |
0.9185 | 0.8738 | 0.7787 | 2.3053 | 0.7790 | 0.4232 | 0.6704 |
First tested 2020-05-14 Last tested 2021-11-15 maps from authors |
|
HATES |
paper in preparation |
0.8744 | 0.7549 | 2.3762 | 0.7897 | 0.7146 | 0.5313 |
First tested 2021-11-24 Last tested 2021-11-24 maps from authors |
||
Ani |
(work in progress) |
0.8748 | 0.7490 | 2.3518 | 0.7997 | 0.6741 | 0.6879 |
First tested 2022-05-21 Last tested 2022-05-21 maps from authors |
||
EML-NET |
Sen Jia & Neil D.B. Bruce EML-NET: An Expandable Multi-Layer NETwork for Saliency Prediction [arXiv 2018] |
0.8762 | 0.7469 | 2.4876 | 0.7893 | 0.8439 | 0.6756 |
First tested 2019-07-06 Last tested 2019-07-06 maps from authors |
||
G. Ding, N. Imamoglu, A. Caglayan, M. Murakawa, R. Nakamura: SalFBNet: Learning Pseudo-Saliency Distribution via Feedback Convolutional Networks. Image and Vision Computing 2022. |
0.8194 | 0.8769 | 0.7858 | 2.4702 | 0.8141 | 0.4151 | 0.6933 |
First tested 2021-11-08 Last tested 2021-11-08 maps from authors |
||
R. Droste, J. Jiao, J.A. Noble: Unified Image and Video Saliency Modeling. ECCV 2020 (arXiv) |
0.9505 | 0.8772 | 0.7840 | 2.3689 | 0.7851 | 0.4149 | 0.6746 |
First tested 2019-11-07 Last tested 2021-11-16 maps from authors, for probabilistic predictions see appendix of arxiv paper. |
||
0.8811 | 0.7651 | 1.4946 | 0.5750 | 0.8885 | 0.4773 |
First tested 2023-07-28 Last tested 2023-07-28 maps from authors |
||||
A. Linardos, M. Kümmerer, O. Press, M. Bethge: DeepGaze IIE: Calibrated prediction in and out-of-domain for state-of-the-art saliency modeling [ICCV 2021] |
1.0715 | 0.8829 | 0.7942 | 2.5265 | 0.8242 | 0.3474 | 0.6993 |
First tested 2020-09-24 Last tested 2020-09-24 maps from authors |
||
Gold Standard (leave-one-subject-out) |
Gaussian kernel density estimate using all fixations of an image with uniform mixture component. Crossvalidated over subjects. Leave-one-subject-out performance |
1.3239 | 0.8982 | 2.8481 |
First tested 2019-10-24 Last tested 2022-11-10 |
|||||
Gold Standard |
Gaussian kernel density estimate using all fixations of an image with uniform mixture component. Crossvalidated over subjects. Joint performance. |
1.7366 | 0.9341 | 0.8825 | 3.1408 | 0.9828 | 0.0602 | 0.8992 |
First tested 2019-09-15 Last tested 2021-11-26 |