MIT/Tuebingen Saliency Benchmark

Leaderboard

Click on a metric name to sort that metric. Models evaluated as probabilistic models are shown with green background. The performance under the metric which a model has been trained on is shown in italic. The code for evaluation models can be found here.

Name Published Code IG AUC sAUC NSS CC KLDiv SIM Date tested

IttiKoch

Itti, L., Koch, C., & Niebur, E. (1998). A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(11), 1254–1259

matlab

0.5434 0.5357 0.4081 0.1307 1.4964 0.3378 First tested 2019-09-14
Last tested 2019-09-14

maps from SaliencyToolBox via pysaliency

http://cseweb.ucsd.edu/~l6zhang/

Lingyun Zhang, Matthew H. Tong, Tim K. Marks, Honghao Shan, Garrison W. Cottrell. SUN: A Bayesian framework for saliency using natural statistics [JoV 2008]

matlab

0.6939 0.6260 0.7620 0.2770 1.2815 0.3931 First tested 2019-10-23
Last tested 2019-10-23

maps from code via SMILER. Params: rescale=0.5

Saliency Detection by Self-Resemblance (SSR)

Hae Jong Seo, Peyman Milanfar Nonparametric Bottom-Up Saliency Detection by Self-Resemblance [CVPR 2009].

0.7064 0.6482 0.8110 0.2999 1.5255 0.4124 First tested 2019-09-05
Last tested 2019-09-05

maps from SMILER

Quaternion-Based Spectral Saliency (QSS)

B. Schauerte, R. Stiefelhagen. Quaternion-based Spectral Saliency Detection for Eye Fixation Prediction [ECCV 2012]

matlab

0.7233 0.6679 0.9116 0.3300 1.1431 0.4208 First tested 2019-09-05
Last tested 2019-09-05

maps from SMILER

Image Signature

Xiaodi Hou, Jonathan Harel, Christof Koch. Image Signature: Highlighting Sparse Salient Regions [PAMI 2011]

matlab

0.7461 0.6610 0.9907 0.3709 1.0897 0.4278 First tested 2019-09-05
Last tested 2019-09-05

maps from SMILER

Dynamic Visual Attention (DVA)

Hou, Xiaodi, and Liqing Zhang. Dynamic visual attention: Searching for coding length increments NIPS 2008

matlab

0.7548 0.6584 1.0142 0.3762 1.1136 0.4518 First tested 2019-09-04
Last tested 2019-09-04

maps from SMILER

Context-Aware Saliency

Stas Goferman, Lihi Zelnik-Manor, Ayellet Tal. Context-Aware Saliency Detection [CVPR 2010] [PAMI 2012]

matlab

0.7581 0.6402 1.0186 0.3848 1.0723 0.4319 First tested 2019-09-04
Last tested 2019-09-04

maps from SMILER

AIM

Neil Bruce, John Tsotsos. Attention based on information maximization [JoV 2007]

matlab

0.7619 0.6647 0.8824 0.3419 1.2476 0.4096 First tested 2019-09-10
Last tested 2019-09-10

maps from code via SMILER. Params: resize=0.5, thebasis='31infomax975'

RARE2012

Nicolas Riche, Matei Mancas, Matthieu Duvinage, Makiese Mibulumukini, Bernard Gosselin, Thierry Dutoit. RARE2012: A multi-scale rarity-based saliency detection with its comparative statistical analysis [Signal Processing: Image Communication, 2013]

matlab

0.7700 0.6729 1.1513 0.4220 1.0090 0.4572 First tested 2019-09-05
Last tested 2019-09-05

maps from SMILER

Boolean Map based Saliency (BMS)

Jianming Zhang, Stan Sclaroff. Saliency detection: a boolean map approach [ICCV 2013]

matlab, executable

0.7718 0.6918 1.1512 0.4130 1.0235 0.4456 First tested 2019-09-04
Last tested 2019-09-04

maps from SMILER

IttiKoch2

Implementation by Jonathan Harel (part of GBVS toolbox)

matlab

0.7811 0.6323 1.1130 0.4299 0.9605 0.4648 First tested 2019-09-05
Last tested 2019-09-05

maps from SMILER

Centerbias

leave-one-image out kernel density estimate with uniform mixture component

0.0000 0.7830 0.5000 1.0960 0.4455 0.9506 0.4816 First tested 2019-09-10
Last tested 2019-09-10

Fast and Efficient Saliency (FES)

Hamed Rezazadegan Tavakoli, Esa Rahtu, Janne Heikkila. Fast and efficient saliency detection using sparse sampling and kernel density estimation [SCIA 2011]

matlab

0.8018 0.5941 1.2763 0.4827 2.3018 0.4919 First tested 2019-09-04
Last tested 2019-09-04

maps from SMILER

Graph-Based Visual Saliency (GBVS)

Jonathan Harel, Christof Koch, Pietro Perona. Graph-Based Visual Saliency [NIPS 2006]

matlab

0.8062 0.6299 1.2457 0.4791 0.8878 0.4835 First tested 2019-09-05
Last tested 2019-09-05

maps from SMILER

Judd Model

Tilke Judd, Krista Ehinger, Fredo Durand, Antonio Torralba. Learning to predict where humans look [ICCV 2009]

matlab

0.8095 0.6003 1.1882 0.4664 1.1084 0.4182 First tested 2019-09-12
Last tested 2019-09-12

maps from SaliencyToolBox via pysaliency

LDS

Shu Fang, Jia Li, Yonghong Tian, Tiejun Huang, Xiaowu Chen. Learning Discriminative Subspaces on Random Contrasts for Image Saliency Analysis [TNNLS 2016]

matlab

0.8108 0.6020 1.3649 0.5177 1.0631 0.5222 First tested 2019-09-05
Last tested 2019-09-05

maps from SMILER

CovSal

Erkut Erdem, Aykut Erdem. Visual saliency estimation by nonlinearly integrating features using region covariances [JoV 2013]

matlab

0.8116 0.5894 1.3362 0.5000 1.7220 0.5058 First tested 2019-09-04
Last tested 2019-09-04

maps from SMILER

OpenSALICON

Christopher Lee Thomas. OpenSalicon: An Open Source Implementation of the Salicon Saliency Model [arXiv 2016]

python (caffe)

0.8140 0.7395 1.7029 0.5620 0.7829 0.5166 First tested 2019-09-06
Last tested 2019-09-06

maps from SMILER

Ensembles of Deep Networks (eDN)

Eleonora Vig, Michael Dorr, David Cox. Large-Scale Optimization of Hierarchical Features for Saliency Prediction in Natural Images [CVPR 2014]

python

0.8171 0.6180 1.1399 0.4518 1.1369 0.4112 First tested 2019-09-06
Last tested 2019-09-06

maps from SMILER

ICF

Matthias Kümmerer, Thomas S. A. Wallis, Leon A. Gatys, Matthias Bethge. Understanding Low- and High-Level Contributions to Fixation Prediction [ICCV 2017]

python (tensorflow)

0.4140 0.8330 0.6957 1.6134 0.5876 0.7084 0.5576 First tested 2019-03-26
Last tested 2019-03-26

ML-Net

Marcella Cornia, Lorenzo Baraldi, Giuseppe Serra, Rita Cucchiara. A Deep Multi-Level Network for Saliency Prediction [ICPR 2016]

python

0.8386 0.7399 1.9748 0.6633 0.8006 0.5819 First tested 2019-09-05
Last tested 2019-09-05

maps from SMILER

DeepGaze I

Matthias Kümmerer, Lucas Theis, Matthias Bethge. Deep Gaze I: Boosting Saliency Prediction with Feature Maps Trained on ImageNet [arxiv 2014, ICLR 2015 workshop]

0.4836 0.8427 0.7232 1.7234 0.6144 0.6678 0.5717 First tested 2019-09-05
Last tested 2019-09-05

predictions from authors

Deep Visual Attention (DVA)

W. Wang, and J. Shen. Deep Visual Attention Prediction [IEEE TIP 2018]

matlab (caffe)

0.8430 0.7257 1.9305 0.6631 0.6293 0.5848 First tested 2019-09-04
Last tested 2019-09-04

maps from SMILER

Saliency Attentive Model (SAM-VGG)

Marcella Cornia, Lorenzo Baraldi, Giuseppe Serra, Rita Cucchiara. Predicting Human Eye Fixations via an LSTM-based Saliency Attentive Model [IEEE TIP 2018]

python (theano)

0.8473 0.7305 1.9552 0.6630 1.2746 0.5986 First tested 2019-09-09
Last tested 2019-09-09

maps from SMILER

SalGAN

Junting Pan, Cristian Canton, Kevin McGuinness, Noel E. O'Connor, Jordi Torres, Elisa Sayrol and Xavier Giro-i-Nieto. SalGAN: Visual Saliency Prediction with Generative Adversarial Networks [arXiv 2017]

python

0.8498 0.7354 1.8620 0.6740 0.7574 0.5932 First tested 2019-09-06
Last tested 2019-09-06

maps from SMILER

Saliency Attentive Model (SAM-ResNet)

Marcella Cornia, Lorenzo Baraldi, Giuseppe Serra, Rita Cucchiara. Predicting Human Eye Fixations via an LSTM-based Saliency Attentive Model [IEEE TIP 2018]

python (theano)

0.8526 0.7396 2.0628 0.6897 1.1710 0.6122 First tested 2019-09-09
Last tested 2019-09-09

maps from SMILER

CASNet II (Context Adaptive Saliency Network)

S. Fan, Z. Shen, M. Jiang, B. Koenig, J. Xu, M. Kankanhali, Q. Zhao. Emotional Attention: A Study of Image Sentiment and Visual Attention [CVPR 2018]

python (tensorflow)

0.8552 0.7398 1.9859 0.7054 0.5857 0.5806 First tested 2019-11-11
Last tested 2019-11-11

maps from authors

GazeGAN

Z. Che, A. Borji, G. Zhai, X. Min, G. Guo, P. Le Callet: How is Gaze Influenced by Image Transformations? Dataset and Model. IEEE Transactions on Image Processing (2019)

python (pytorch)

0.8607 0.7316 2.2118 0.7579 1.3390 0.6491 First tested 2020-04-21
Last tested 2020-04-21

maps from authors

UNISAL

R. Droste, J. Jiao, J.A. Noble: Unified Image and Video Saliency Modeling. ECCV 2020 (arXiv)

python (pytorch)

0.8718 0.7425 2.3216 0.7841 0.9630 0.6735 First tested 2019-11-07
Last tested 2019-11-07

maps from authors

DeepGaze II

Matthias Kümmerer, Thomas S. A. Wallis, Leon A. Gatys, Matthias Bethge. Understanding Low- and High-Level Contributions to Fixation Prediction [ICCV 2017]

python (tensorflow)

0.9247 0.8733 0.7759 2.3371 0.7703 0.4239 0.6636 First tested 2019-09-11
Last tested 2019-09-11

MSI-Net

A. Kroner, M. Senden, K. Driessens, R. Goebel: Contextual encoder–decoder network for visual saliency prediction. Neural Networks 2020

python (tensorflow)

0.9185 0.8738 0.7787 2.3053 0.7790 0.4232 0.6704 First tested 2020-05-14
Last tested 2020-05-14

maps from authors

EML-NET

Sen Jia. EML-NET: An Expandable Multi-Layer NETwork for Saliency Prediction [arXiv 2018]

0.8762 0.7469 2.4876 0.7893 0.8439 0.6756 First tested 2019-07-06
Last tested 2019-07-06

maps from authors

Gold Standard (leave-one-subject-out)

Gaussian kernel density estimate using all fixations of an image with uniform mixture component. Crossvalidated over subjects. Leave-one-subject-out performances

1.3172 0.8982 0.8234 2.8481 First tested 2019-10-24
Last tested 2019-10-24
Gold Standard

Gaussian kernel density estimate using all fixations of an image with uniform mixture component. Crossvalidated over subjects. Joint performance.

1.7366 0.9341 0.8825 3.1408 0.9828 0.0602 0.8997 First tested 2019-09-15
Last tested 2019-09-15

Baseline models