Click on a metric name to sort that metric. Models evaluated as probabilistic models are shown with green background. The performance under the metric which a model has been trained on is shown in italic. The code for evaluation models can be found here.
Name | Published | Code | IG | AUC | sAUC | NSS | CC | KLDiv | SIM | Date tested |
Lingyun Zhang, Matthew H. Tong, Tim K. Marks, Honghao Shan, Garrison W. Cottrell. SUN: A Bayesian framework for saliency using natural statistics [JoV 2008] |
0.7128 | 0.5815 | 0.8127 | 0.3164 | 2.2040 | 0.4391 |
First tested 2021-04-07 Last tested 2023-07-07 maps from code via SMILER. Params: rescale=0.5 |
|||
Saliency Detection by Self-Resemblance (SSR) |
Hae Jong Seo, Peyman Milanfar Nonparametric Bottom-Up Saliency Detection by Self-Resemblance [CVPR 2009]. |
0.7209 | 0.5943 | 0.8543 | 0.3370 | 1.5695 | 0.4540 |
First tested 2021-04-01 Last tested 2023-07-07 maps from SMILER |
||
Quaternion-Based Spectral Saliency (QSS) |
B. Schauerte, R. Stiefelhagen. Quaternion-based Spectral Saliency Detection for Eye Fixation Prediction [ECCV 2012] |
0.7510 | 0.6132 | 0.8368 | 0.3318 | 1.0189 | 0.4564 |
First tested 2021-04-01 Last tested 2023-07-06 maps from SMILER |
||
AIM |
Neil Bruce, John Tsotsos. Attention based on information maximization [JoV 2007] |
0.7547 | 0.6092 | 0.9680 | 0.3819 | 1.1924 | 0.4564 |
First tested 2021-04-07 Last tested 2023-07-05 maps from code via SMILER. Params: resize=0.5, thebasis='31infomax975' |
||
OpenSALICON |
Christopher Lee Thomas. OpenSalicon: An Open Source Implementation of the Salicon Saliency Model [arXiv 2016] |
0.7627 | 0.6341 | 1.1985 | 0.4400 | 1.0007 | 0.5032 |
First tested 2021-04-01 Last tested 2023-07-07 maps from SMILER |
||
Dynamic Visual Attention (DVA) |
Hou, Xiaodi, and Liqing Zhang. Dynamic visual attention: Searching for coding length increments NIPS 2008 |
0.7664 | 0.6089 | 1.0686 | 0.4120 | 1.1251 | 0.4889 |
First tested 2021-03-31 Last tested 2023-07-05 maps from SMILER |
||
Nicolas Riche, Matei Mancas, Matthieu Duvinage, Makiese Mibulumukini, Bernard Gosselin, Thierry Dutoit. RARE2012: A multi-scale rarity-based saliency detection with its comparative statistical analysis [Signal Processing: Image Communication, 2013] |
0.7689 | 0.6108 | 1.0960 | 0.4302 | 0.9584 | 0.4880 |
First tested 2021-04-01 Last tested 2023-07-06 maps from SMILER |
|||
Image Signature |
Xiaodi Hou, Jonathan Harel, Christof Koch. Image Signature: Highlighting Sparse Salient Regions [PAMI 2011] |
0.7704 | 0.6082 | 1.0864 | 0.4320 | 0.9095 | 0.4812 |
First tested 2021-04-01 Last tested 2023-07-06 maps from SMILER |
||
Stas Goferman, Lihi Zelnik-Manor, Ayellet Tal. Context-Aware Saliency Detection [CVPR 2010] [PAMI 2012] |
0.7775 | 0.5939 | 1.0901 | 0.4340 | 0.9240 | 0.4889 |
First tested 2021-03-31 Last tested 2023-07-05 maps from SMILER |
|||
Jianming Zhang, Stan Sclaroff. Saliency detection: a boolean map approach [ICCV 2013] |
0.7826 | 0.6267 | 1.1879 | 0.4562 | 1.0294 | 0.5106 |
First tested 2021-03-31 Last tested 2023-07-05 maps from SMILER |
|||
ML-Net |
Marcella Cornia, Lorenzo Baraldi, Giuseppe Serra, Rita Cucchiara. A Deep Multi-Level Network for Saliency Prediction [ICPR 2016] |
0.7852 | 0.6318 | 1.3280 | 0.4964 | 0.9369 | 0.5258 |
First tested 2021-04-01 Last tested 2023-07-06 maps from SMILER |
||
IttiKoch2 |
Implementation by Jonathan Harel (part of GBVS toolbox) |
0.7916 | 0.5954 | 1.1945 | 0.4772 | 0.8342 | 0.5030 |
First tested 2021-04-01 Last tested 2023-07-06 maps from SMILER |
||
Jonathan Harel, Christof Koch, Pietro Perona. Graph-Based Visual Saliency [NIPS 2006] |
0.7979 | 0.5863 | 1.2342 | 0.4919 | 0.8262 | 0.5115 |
First tested 2021-04-01 Last tested 2023-07-06 maps from SMILER |
|||
Deep Visual Attention (DVA) |
W. Wang, and J. Shen. Deep Visual Attention Prediction [IEEE TIP 2018] |
0.8000 | 0.6253 | 1.4287 | 0.5394 | 0.8283 | 0.5398 |
First tested 2021-03-31 Last tested 2023-07-05 maps from SMILER |
||
Junting Pan, Cristian Canton, Kevin McGuinness, Noel E. O'Connor, Jordi Torres, Elisa Sayrol and Xavier Giro-i-Nieto. SalGAN: Visual Saliency Prediction with Generative Adversarial Networks [arXiv 2017] |
0.8085 | 0.6354 | 1.4624 | 0.5668 | 0.9392 | 0.5441 |
First tested 2021-04-01 Last tested 2023-07-07 maps from SMILER |
|||
Hamed Rezazadegan Tavakoli, Esa Rahtu, Janne Heikkila. Fast and efficient saliency detection using sparse sampling and kernel density estimation [SCIA 2011] |
0.8212 | 0.5450 | 1.6103 | 0.6325 | 2.5243 | 0.5643 |
First tested 2021-03-31 Last tested 2023-07-06 maps from SMILER |
|||
LDS |
Shu Fang, Jia Li, Yonghong Tian, Tiejun Huang, Xiaowu Chen. Learning Discriminative Subspaces on Random Contrasts for Image Saliency Analysis [TNNLS 2016] |
0.8281 | 0.5669 | 1.5356 | 0.6131 | 0.8719 | 0.5785 |
First tested 2021-04-01 Last tested 2023-07-06 maps from SMILER |
||
EML-NET |
Sen Jia & Neil D.B. Bruce EML-NET: An Expandable Multi-Layer NETwork for Saliency Prediction [arXiv 2018] |
0.8310 | 0.5853 | 1.5649 | 0.6209 | 1.6914 | 0.5840 |
First tested 2024-05-14 Last tested 2024-05-14 maps computed from model source code using a downscaling which was found to be optimal on the training set |
||
Erkut Erdem, Aykut Erdem. Visual saliency estimation by nonlinearly integrating features using region covariances [JoV 2013] |
0.8402 | 0.5570 | 1.7411 | 0.6814 | 1.4373 | 0.6061 |
First tested 2021-03-31 Last tested 2023-07-05 maps from SMILER |
|||
X. Hun C. Shen, X. Boix, Q. Zhao: SALICON: Reducing the Semantic Gap in Saliency Prediction by Adapting Deep Neural Networks. ICCV 2015 |
0.8406 | 0.6466 | 1.6754 | 0.6402 | 0.8011 | 0.6158 |
First tested 2023-07-11 Last tested 2023-07-11 maps from SALICON web demo |
|||
Tilke Judd, Krista Ehinger, Fredo Durand, Antonio Torralba. Learning to predict where humans look [ICCV 2009] |
0.8430 | 0.5654 | 1.2978 | 0.5353 | 0.9321 | 0.4639 |
First tested 2023-07-04 Last tested 2023-07-06 maps from original matlab code via pysaliency |
|||
Centerbias |
leave-one-image out kernel density estimate with uniform mixture component |
0.0000 | 0.8445 | 0.1166 | 2.0870 | 0.7833 | 0.4875 | 0.6559 |
First tested 2021-04-09 Last tested 2023-07-04 |
|
Eleonora Vig, Michael Dorr, David Cox. Large-Scale Optimization of Hierarchical Features for Saliency Prediction in Natural Images [CVPR 2014] |
0.8470 | 0.5782 | 1.2092 | 0.5003 | 0.9832 | 0.4508 |
First tested 2021-04-01 Last tested 2023-07-07 maps from SMILER |
|||
DeepGaze I |
Matthias Kümmerer, Lucas Theis, Matthias Bethge. Deep Gaze I: Boosting Saliency Prediction with Feature Maps Trained on ImageNet [arxiv 2014, ICLR 2015 workshop] |
-0.1546 | 0.8524 | 0.6184 | 1.8430 | 0.7403 | 0.5094 | 0.6391 |
First tested 2023-07-04 Last tested 2023-07-04 predictions from authors |
|
G. Ding, N. Imamoglu, A. Caglayan, M. Murakawa, R. Nakamura: SalFBNet: Learning Pseudo-Saliency Distribution via Feedback Convolutional Networks. Image and Vision Computing 2022. |
0.8549 | 0.6330 | 1.8789 | 0.7027 | 1.1983 | 0.6425 |
First tested 2024-02-29 Last tested 2024-02-29 saliency maps computed with public code |
|||
Matthias Kümmerer, Thomas S. A. Wallis, Leon A. Gatys, Matthias Bethge. Understanding Low- and High-Level Contributions to Fixation Prediction [ICCV 2017] |
-0.0229 | 0.8561 | 0.6187 | 1.9588 | 0.7791 | 0.4448 | 0.6697 |
First tested 2023-07-24 Last tested 2023-07-24 |
||
R. Droste, J. Jiao, J.A. Noble: Unified Image and Video Saliency Modeling. ECCV 2020 (arXiv) |
0.0321 | 0.8604 | 0.6684 | 1.9359 | 0.7399 | 0.4703 | 0.6633 |
First tested 2024-02-28 Last tested 2024-02-28 predictions from public model implementation. Images have beend downscaled by a factor of 4.6, which was found to optimal on the CAT2000 training set |
||
Matthias Kümmerer, Thomas S. A. Wallis, Leon A. Gatys, Matthias Bethge. Understanding Low- and High-Level Contributions to Fixation Prediction [ICCV 2017] |
0.0839 | 0.8640 | 0.6498 | 1.9619 | 0.7950 | 0.3815 | 0.6865 |
First tested 2021-04-09 Last tested 2023-07-04 |
||
Ani |
(work in progress) |
0.8687 | 0.6046 | 2.0657 | 0.7963 | 0.4818 | 0.7064 |
First tested 2022-05-23 Last tested 2023-07-11 maps from authors |
||
A. Linardos, M. Kümmerer, O. Press, M. Bethge: DeepGaze IIE: Calibrated prediction in and out-of-domain for state-of-the-art saliency modeling [ICCV 2021] |
0.1893 | 0.8692 | 0.6677 | 2.1122 | 0.8189 | 0.3448 | 0.7060 |
First tested 2023-07-05 Last tested 2023-07-05 densities from authors |
||
Gold Standard (leave-one-subject-out) |
Gaussian kernel density estimate using all fixations of an image with uniform mixture component. Crossvalidated over subjects. Leave-one-subject-out performance |
0.4730 | 0.8840 | 0.6930 | 2.4878 |
First tested 2023-07-05 Last tested 2023-07-05 |
||||
Gold Standard |
Gaussian kernel density estimate using all fixations of an image with uniform mixture component. Crossvalidated over subjects. Joint performance. |
0.8026 | 0.9159 | 0.7865 | 2.7429 | 0.9685 | 0.0893 | 0.8657 |
First tested 2023-07-06 Last tested 2023-07-06 |